
Dependency Parsing

CSE538 - Spring 2024

Topics

Dependency Parsing

Transition-based (Shift-Reduce algorithm)

Dependency Parsing

<head> <dependent>

<relationship>

dependency -- binary asymmetrical relation between tokens

Dependency Parsing

(From SLP 3rd ed., Jurafsky and Martin 2018)

Dependency Parsing

(From SLP 3rd ed., Jurafsky and Martin 2018)

Dependency Parsing

(From SLP 3rd ed., Jurafsky and Martin 2018)

Dependency Parsing

(From SLP 3rd ed., Jurafsky and Martin 2018)

Dependency Parsing

(From SLP 3rd ed., Jurafsky and Martin 2018)

Verbal Predicate -- like a function, takes
arguments: “United” and “the flight” in this case.

Dependency Parsing -- Verbal Predicates

(From SLP 3rd ed., Jurafsky and Martin 2018)

Dependency Parsing -- Verbal Predicates

(From SLP 3rd ed., Jurafsky and Martin 2018)

cancel(“United”, “the morning flights to Houston”)

Dependency Parsing -- Verbal Predicates

(From SLP 3rd ed., Jurafsky and Martin 2018)

to_call_off(“United”, “the morning flights to Houston”)

Dependency Parsing -- Verbal Predicates
Semantic Roles

(From SLP 3rd ed., Jurafsky and Martin 2018)

to_call_off(agent=“United”, event=“the morning flights to Houston”)

Dependency Parsing -- How to Represent?

(From SLP 3rd ed., Jurafsky and Martin 2018)

A Graph: G = [(V1, A1), (V2, A2), …] (vertices and arcs)
Restrictions:
 ?

Dependency Parsing -- How to Represent?

(From SLP 3rd ed., Jurafsky and Martin 2018)

A Graph: G = [(V1, A1), (V2, A2), …] (vertices and arcs)
Restrictions:
1) Single designated ROOT with no incoming arcs
2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex

Transition-based Dependency Parsing

Inspired by “Shift-reduce parsing” -- process one word at a time, using a stack to
keep some sort of memory.

Elements:

● S: stack, initialized with “ROOT”
● B: input buffer, initialized with tokens (w1, w2, ….) of sentence
● A: set of dependency arcs, initialized empty
● T: Actions, given wi (next token in stack)

Transition-based Dependency Parsing

Inspired by “Shift-reduce parsing” -- process one word at a time, using a stack to
keep some sort of memory.

Elements:

● S: stack, initialized with “ROOT”
● B: input buffer, initialized with tokens (w1, w2, ….) of sentence
● A: set of dependency arcs, initialized empty
● T: Actions, given wi (next token in stack)

○ shift(B,S): move w from B to S
○ left-arc(S,A): make top of stack head of next item: add to A; remove dependent from stack
○ right-arc(S,A): make top of stack dependent of next item: add to A; remove dep from stack

Using discriminative classifiers (i.e. logistic regression) to make decisions.

Transition-based Dependency Parsing

(From SLP 3rd ed., Jurafsky and Martin 2018)

Transition-based Dependency Parsing

(From SLP 3rd ed., Jurafsky and Martin 2018)

Transition-based Dependency Parsing

(From SLP 3rd ed., Jurafsky and Martin 2018)

Transition-based Dependency Parsing

(From SLP 3rd ed., Jurafsky and Martin 2018)

shift(B,S): move w from B to S

left-arc(S,A): make top of stack head of next item: add to A;
remove dependent from stack

right-arc(S,A): make top of stack dependent of next item: add to A;
remove dep from stack

Transition-based Dependency Parsing

(From SLP 3rd ed., Jurafsky and Martin 2018)

shift(B,S): move w from B to S

left-arc(S,A): make top of stack head of next item: add to A;
remove dependent from stack

right-arc(S,A): make top of stack dependent of next item: add to A;
remove dep from stack

Transition-based Dependency Parsing

(From SLP 3rd ed., Jurafsky and Martin 2018)

shift(B,S): move w from B to S

left-arc(S,A): make top of stack head of next item: add to A;
remove dependent from stack

right-arc(S,A): make top of stack dependent of next item: add to A;
remove dep from stack

Transition-based Dependency Parsing

(From SLP 3rd ed., Jurafsky and Martin 2018)

shift(B,S): move w from B to S

left-arc(S,A): make top of stack head of next item: add to A;
remove dependent from stack

right-arc(S,A): make top of stack dependent of next item: add to A;
remove dep from stack

Transition-based Dependency Parsing

(From SLP 3rd ed., Jurafsky and Martin 2018)

shift(B,S): move w from B to S

left-arc(S,A): make top of stack head of next item: add to A;
remove dependent from stack

right-arc(S,A): make top of stack dependent of next item: add to A;
remove dep from stack

Transition-based Dependency Parsing

(From SLP 3rd ed., Jurafsky and Martin 2018)

Dependency Parsing -- How to Represent?

(From SLP 3rd ed., Jurafsky and Martin 2018)

A Graph: G = [(V1, A1), (V1, A2), …] (vertices and arcs)
Restrictions:
1) Single designated ROOT with no incoming arcs
2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex

Dependency Parsing -- How to Represent?

(From SLP 3rd ed., Jurafsky and Martin 2018)

A Graph: G = [(V1, A1), (V1, A2), …] (vertices and arcs)
Restrictions:
1) Single designated ROOT with no incoming arcs
2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex
Projectivity: Given head, dependent; for every word between head and dependent

there exists a path from head to that word

Dependency Parsing -- How to Represent?

(From SLP 3rd ed., Jurafsky and Martin 2018)

A Graph: G = [(V1, A1), (V1, A2), …] (vertices and arcs)
Restrictions:
1) Single designated ROOT with no incoming arcs
2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex
Projectivity: Given head, dependent; for every word between head and dependent

there exists a path from head to that word

Dependency Parsing -- How to Represent?

(From SLP 3rd ed., Jurafsky and Martin 2018)

A Graph: G = [(V1, A1), (V1, A2), …] (vertices and arcs)
Restrictions:
1) Single designated ROOT with no incoming arcs
2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex
Projectivity: Given head, dependent; for every word between head and dependent

there exists a path from head to that word

Dependency Parsing -- How to Represent?

(From SLP 3rd ed., Jurafsky and Martin 2018)

A Graph: G = [(V1, A1), (V1, A2), …] (vertices and arcs)
Restrictions:
1) Single designated ROOT with no incoming arcs
2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex
Projectivity: Given head, dependent; for every word between head and dependent

there exists a path from head to that word.
Not Projective:

Dependency Parsing -- How to Represent?

(From SLP 3rd ed., Jurafsky and Martin 2018)

A Graph: G = [(V1, A1), (V1, A2), …] (vertices and arcs)
Restrictions:
1) Single designated ROOT with no incoming arcs
2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex
Projectivity: Given head, dependent; for every word between head and dependent

there exists a path from head to that word.
Not Projective:

Why do we care? Dependency trees from Context-Free Grammars are
guaranteed to be projective; Thus, transition based techniques are certain to have
errors occasionally on non-projective dependency graphs.

From Syntax to Semantics

● We've already seen words have many meanings.
○ Context is key

● Verbs can been seen as functions (predicates) that take arguments.
○ Syntactic arguments fulfill semantic roles

● Words have implicit syntactic relationships
with each other in given sentences.
○ Dependency Parsing: each word has one head
○ Easily constructed through 3 actions of shift-reduce parsing.

Takeaway: There is an interplay between word meaning and sentence structure!

Graph-based Approaches

(From SLP 3rd ed., Jurafsky and Martin 2018)

A Graph: G = [(V1, A1), (V1, A2), …] (vertices and arcs)
Restrictions:
1) Single designated ROOT with no incoming arcs
2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex
Idea: Search through all possible trees and pick best.

Graph-based Approaches

(From SLP 3rd ed., Jurafsky and Martin 2018)

A Graph: G = [(V1, A1), (V1, A2), …] (vertices and arcs)
Restrictions:
1) Single designated ROOT with no incoming arcs
2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex
Idea: Search through all possible trees and pick best.

General approach: For
each word, pick the most
likely head. Then check if
still a fully-connected tree,
and adjust.

Graph-based Approaches

(From SLP 3rd ed., Jurafsky and Martin 2018)

A Graph: G = [(V1, A1), (V1, A2), …] (vertices and arcs)
Restrictions:
1) Single designated ROOT with no incoming arcs
2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex
Idea: Search through all possible trees and pick best.

General approach: For
each word, pick the most
likely head. Then check if
still a fully-connected tree,
and adjust.

Complex and slow but leads
to state of the art. Now done
with neural models.

Semantic Roles

(From SLP 3rd ed., Jurafsky and Martin 2018)

Semantic Roles

(From SLP 3rd ed., Jurafsky and Martin 2018)

Roles are restricted to nouns, but signalled through
the verb and other parts of speech.

