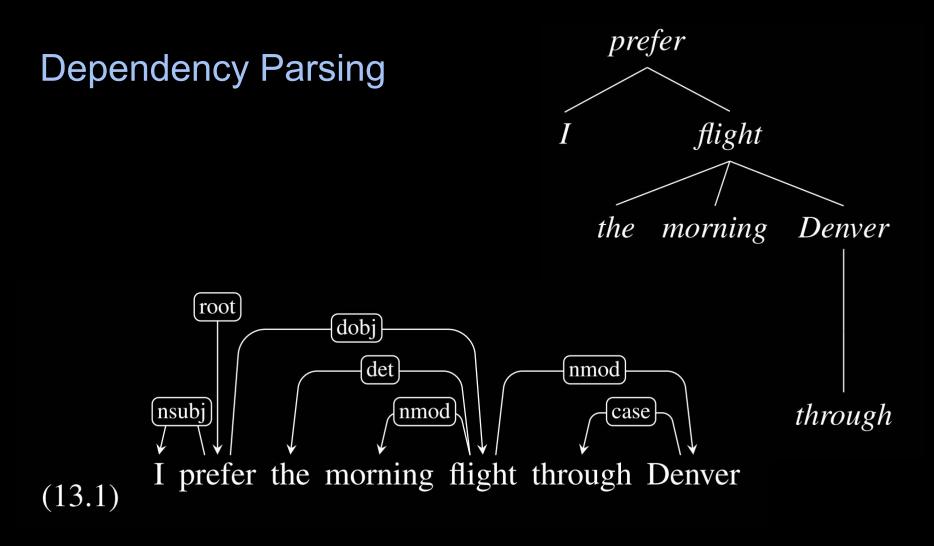
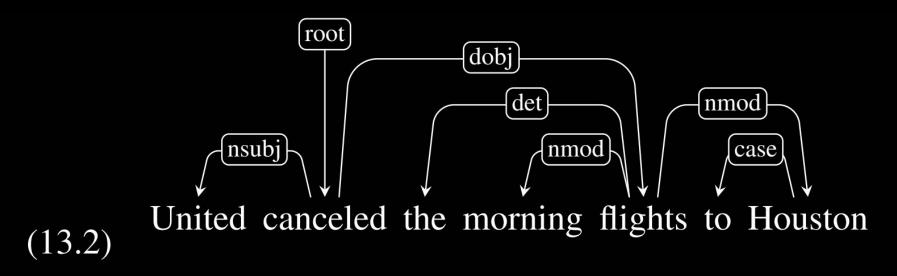

CSE538 - Spring 2024


Topics

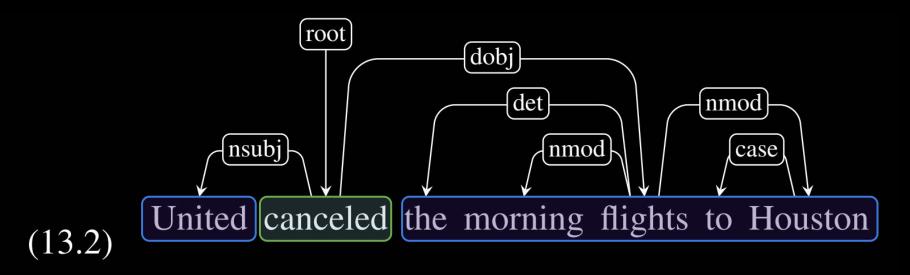
- **Dependency Parsing**
- Transition-based (Shift-Reduce algorithm)

dependency -- binary asymmetrical relation between tokens

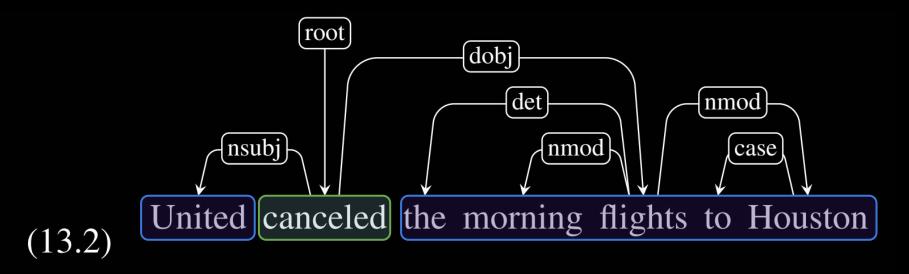

Clausal Argument Relations	Description
NSUBJ	Nominal subject
DOBJ	Direct object
IOBJ	Indirect object
ССОМР	Clausal complement
ХСОМР	Open clausal complement
Nominal Modifier Relations	Description
NMOD	Nominal modifier
AMOD	Adjectival modifier
NUMMOD	Numeric modifier
APPOS	Appositional modifier
DET	Determiner
CASE	Prepositions, postpositions and other case markers
Other Notable Relations	Description
CONJ	Conjunct
CC	Coordinating conjunction
Figure 13.2 Selected dependence	ey relations from the Universal Dependency set. (de Marn-
effe et al., 2014) (From	SLP 3rd ed., Jurafsky and Martin 2018)

Relation	Examples with <i>head</i> and dependent
NSUBJ	United <i>canceled</i> the flight.
DOBJ	United <i>diverted</i> the flight to Reno.
	We <i>booked</i> her the first flight to Miami.
IOBJ	We <i>booked</i> her the flight to Miami.
NMOD	We took the morning <i>flight</i> .
AMOD	Book the cheapest <i>flight</i> .
NUMMOD	Before the storm JetBlue canceled 1000 <i>flights</i> .
APPOS	United, a unit of UAL, matched the fares.
DET	The <i>flight</i> was canceled.
	Which <i>flight</i> was delayed?
CONJ	We <i>flew</i> to Denver and drove to Steamboat.
CC	We flew to Denver and <i>drove</i> to Steamboat.
CASE	Book the flight through Houston.
Figure 13.3	Examples of core Universal Dependency relations.

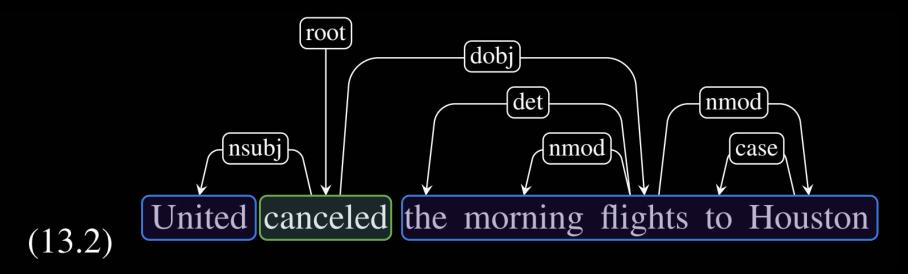
Verbal Predicate -- like a function, takes arguments: "United" and "the flight" in this case.


Relation	Examples with <i>head</i> and dependent
NSUBJ	United canceled the flight.
DOBJ	United <i>diverted</i> the flight to Reno.
	We <i>booked</i> her the first flight to Miami.
IOBJ	We <i>booked</i> her the flight to Miami.
NMOD	We took the morning <i>flight</i> .
AMOD	Book the cheapest <i>flight</i> .
NUMMOD	Before the storm JetBlue canceled 1000 <i>flights</i> .
APPOS	United, a unit of UAL, matched the fares.
DET	The <i>flight</i> was canceled.
	Which <i>flight</i> was delayed?
CONJ	We <i>flew</i> to Denver and drove to Steamboat.
CC	We flew to Denver and drove to Steamboat.
CASE	Book the flight through Houston.
Figure 13.3	Examples of core Universal Dependency relations.

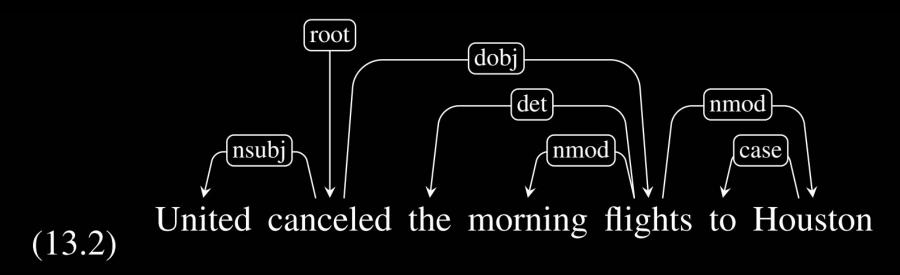
Dependency Parsing -- Verbal Predicates


Dependency Parsing -- Verbal Predicates

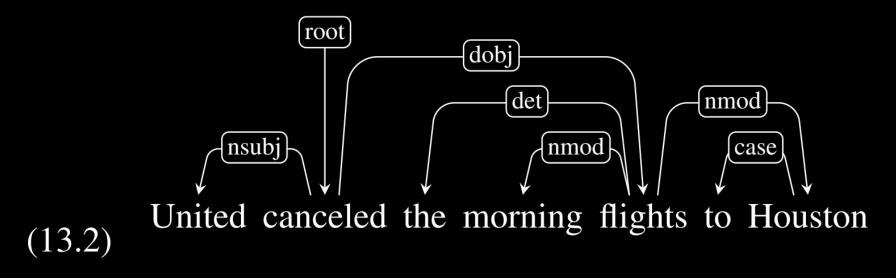
cancel("United", "the morning flights to Houston")


Dependency Parsing -- Verbal Predicates

to_call_off("United", "the morning flights to Houston")


Dependency Parsing -- Verbal Predicates Semantic Roles

to_call_off(agent="United", event="the morning flights to Houston")


A Graph: G = [(V1, A1), (V2, A2), ...] (vertices and arcs) Restrictions:

?

A Graph: G = [(V1, A1), (V2, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex

Inspired by "Shift-reduce parsing" -- process one word at a time, using a stack to keep some sort of memory.

Elements:

- S: stack, initialized with "ROOT"
- *B*: input buffer, initialized with tokens (w1, w2,) of sentence
- *A:* set of dependency arcs, initialized empty
- *T:* Actions, given *wi* (next token in stack)

Inspired by "Shift-reduce parsing" -- process one word at a time, using a stack to keep some sort of memory.

Elements:

- S: stack, initialized with "ROOT"
- *B*: input buffer, initialized with tokens (w1, w2,) of sentence
- *A:* set of dependency arcs, initialized empty
- *T:* Actions, given *wi* (next token in stack)
 - shift(B,S): move w from B to S
 - *left-arc(S,A):* make top of stack **head** of next item: add to A; remove dependent from stack
 - *right-arc(S,A):* make top of stack **dependent** of next item: add to A; remove dep from stack

Using discriminative classifiers (i.e. logistic regression) to make decisions.

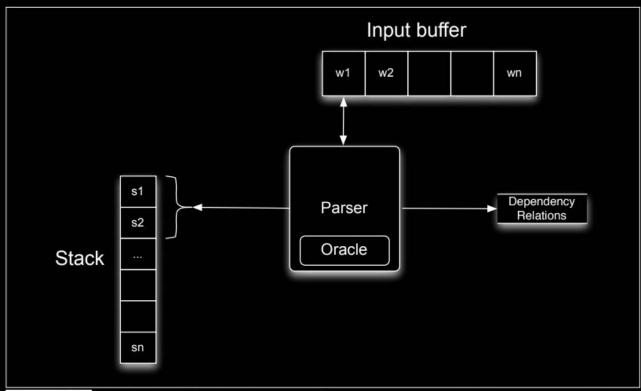
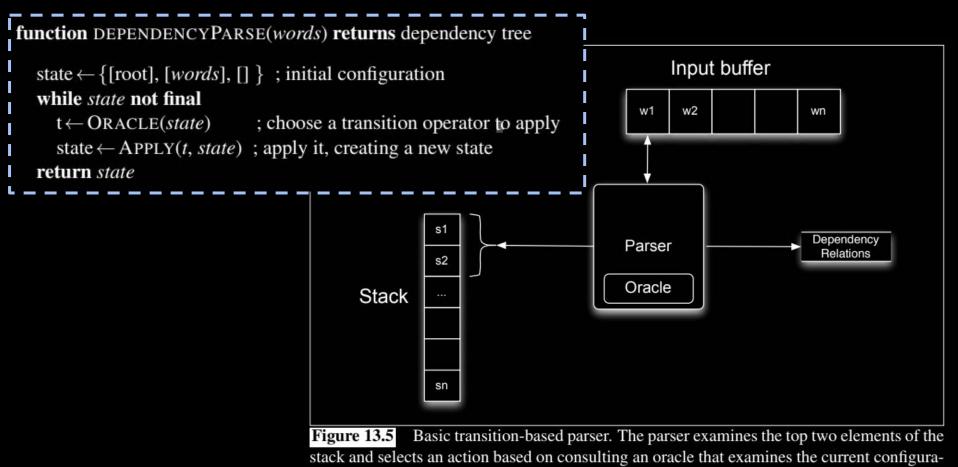



 Figure 13.5
 Basic transition-based parser. The parser examines the top two elements of the stack and selects an action based on consulting an oracle that examines the current configuration.

 (From SLP 3rd ed., Jurafsky and Martin 2018)

tion.

function DEPENDENCYPARSE(*words*) **returns** dependency tree state \leftarrow {[root], [*words*], [] } ; initial configuration **while** *state* **not final** $t \leftarrow ORACLE(state)$; choose a transition operator to apply state \leftarrow APPLY(*t*, *state*) ; apply it, creating a new state **return** *state*

(13.5) Book me the morning flight

Let's consider the state of the configuration at Step 2, after the word *me* has been pushed onto the stack.

Stack	Word List	Relations
[root, book, me]	[the, morning, flight]	

The correct operator to apply here is RIGHTARC which assigns *book* as the head of *me* and pops *me* from the stack resulting in the following configuration.

Stack Word List		Relations	
[root, book]	[the, morning, flight]	$(book \rightarrow me)$	

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	

shift(B,S): move w from B to S

left-arc(S,A): make top of stack **head** of next item: add to A; remove dependent from stack

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	

shift(*B*,*S*): move w from *B* to *S*

left-arc(S,A): make top of stack **head** of next item: add to A; remove dependent from stack

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$

shift(*B*,*S*): move w from *B* to *S*

left-arc(S,A): make top of stack **head** of next item: add to A; remove dependent from stack

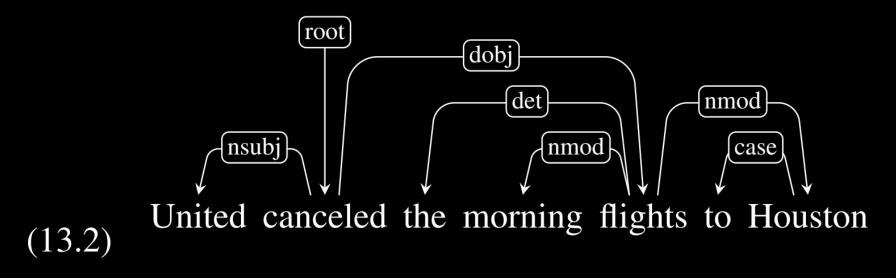
Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	

shift(*B*,*S*): move w from *B* to *S*

left-arc(S,A): make top of stack **head** of next item: add to A; remove dependent from stack

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	
6	[root, book, the, morning, flight]	0	LEFTARC	$(morning \leftarrow flight)$

shift(*B*,*S*): move w from *B* to *S*

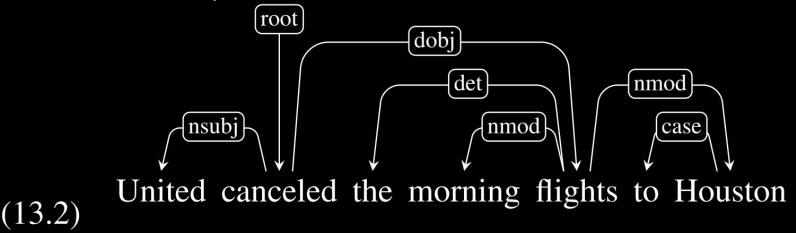

left-arc(S,A): make top of stack **head** of next item: add to A; remove dependent from stack

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	
6	[root, book, the, morning, flight]	0	LEFTARC	$(morning \leftarrow flight)$
7	[root, book, the, flight]	0	LEFTARC	$(\text{the} \leftarrow \text{flight})$
8	[root, book, flight]	0	RIGHTARC	$(book \rightarrow flight)$
9	[root, book]	0	RIGHTARC	$(root \rightarrow book)$
10	[root]	0	Done	

Figure 13.7 Trace of a transition-based parse.

A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex

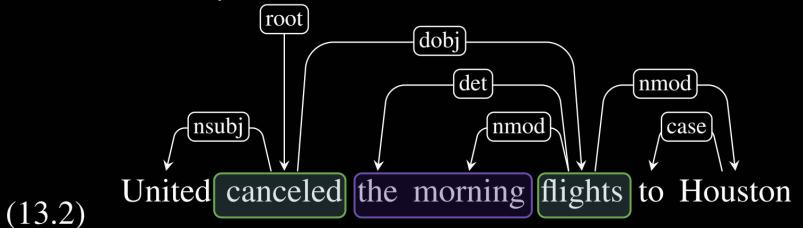


A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex

Projectivity: Given head, dependent; for every word between head and dependent

there exists a path from head to that word

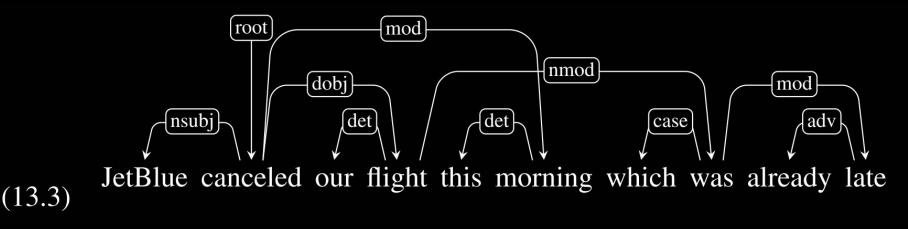


A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex

Projectivity: Given head, dependent; for every word between head and dependent

there exists a path from head to that word

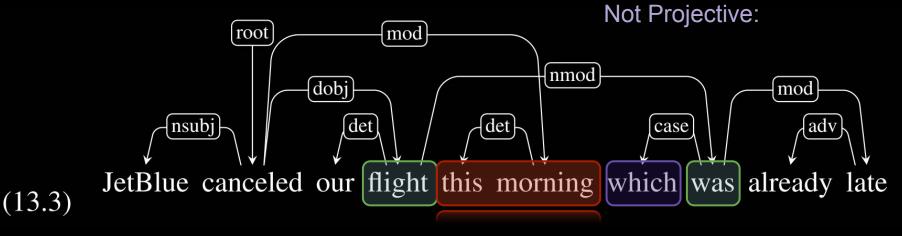


(From SLP 3rd ed., Jurafsky and Martin 2018)

A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex

Projectivity: Given head, dependent; for every word between head and dependent there exists a path from head to that word



A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex

Projectivity: Given head, dependent; for every word between head and dependent there exists a path from head to that word

there exists a path from head to that word.

A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

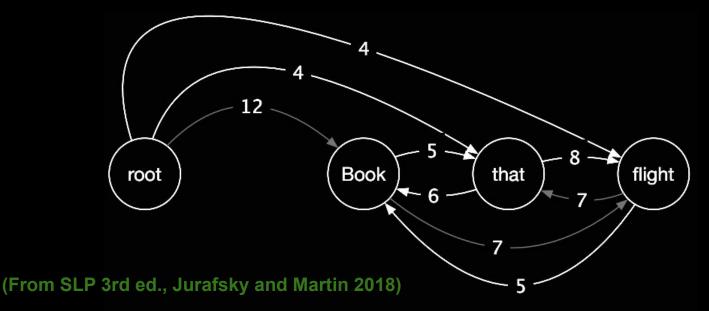
- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex
- Projectivity: Given head, dependent; for every word between head and dependent there exists a path from head to that word.

Not Projective:

<u>Why do we care?</u> Dependency trees from Context-Free Grammars are guaranteed to be projective; Thus, transition based techniques are certain to have errors occasionally on non-projective dependency graphs.

From Syntax to Semantics

- We've already seen words have many meanings.
 - Context is key
- Verbs can been seen as functions (predicates) that take arguments.
 Syntactic arguments fulfill semantic roles
- Words have implicit syntactic relationships with each other in given sentences.
 - Dependency Parsing: each word has one head
 - Easily constructed through 3 actions of shift-reduce parsing.

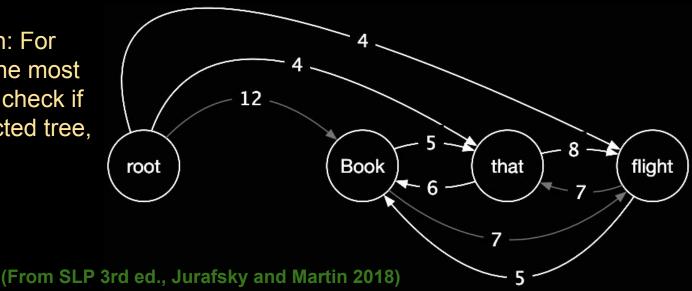

Takeaway: There is an interplay between word meaning and sentence structure!

Graph-based Approaches

A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex

Idea: Search through all possible trees and pick best.

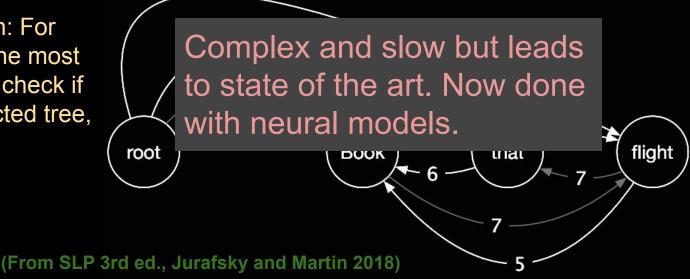


Graph-based Approaches

A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex
- Idea: Search through all possible trees and pick best.

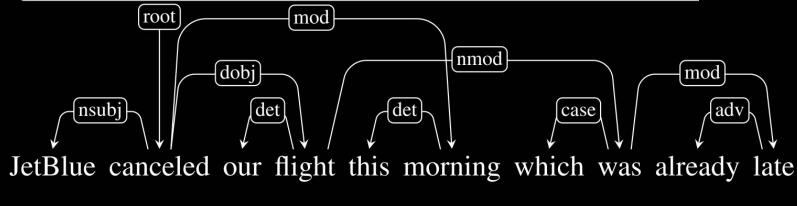
General approach: For each word, pick the most likely head. Then check if still a fully-connected tree, and adjust.



Graph-based Approaches

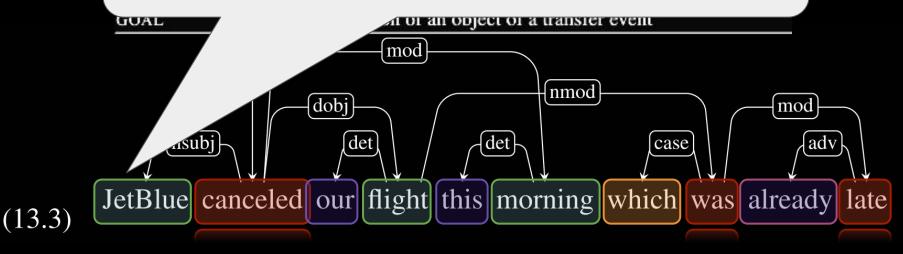
A Graph: G = [(V1, A1), (V1, A2), ...] (vertices and arcs) Restrictions:

- 1) Single designated ROOT with no incoming arcs
- 2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
- 3) unique path from ROOT to every vertex
- Idea: Search through all possible trees and pick best.


General approach: For each word, pick the most likely head. Then check if still a fully-connected tree, and adjust.

Semantic Roles

(13.3)


Thematic Role	Definition
AGENT	The volitional causer of an event
EXPERIENCER	The experiencer of an event
FORCE	The non-volitional causer of the event
THEME	The participant most directly affected by an event
RESULT	The end product of an event
CONTENT	The proposition or content of a propositional event
INSTRUMENT	An instrument used in an event
BENEFICIARY	The beneficiary of an event
SOURCE	The origin of the object of a transfer event
GOAL	The destination of an object of a transfer event

Semantic Roles

Thematic Role	Definition
AGENT	The volitional causer of an event
EXPERIENCER	The experiencer of an event
FORCE	The non-volitional causer of the event
THEME	The participant most directly affected by an event

Roles are restricted to nouns, but signalled through the verb and other parts of speech.

