Dependency Parsing

CSES38 - Spring 2024

Topics

Dependency Parsing

Transition-based (Shift-Reduce algorithm)

Dependency Parsing

<relationship>

<head> <dependent>

dependency -- binary asymmetrical relation between tokens

Dependency Parsing

I prefer the morning flight through Denver

(13.1)

prefer

Dependency Parsing /\

/ flight

T T

the morning Denver
(det)

(de
[through

I prefer the morning flight through Denver

(13.1)

Dependency Parsing

Clausal Argument Relations Description

NSUBJ Nominal subject

DOBJ Direct object

I0OBJ Indirect object

CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description

NMOD Nominal modifier

AMOD Adjectival modifier
NUMMOD Numeric modifier

APPOS Appositional modifier
DET Determiner

CASE Prepositions, postpositions and other case markers
Other Notable Relations Description

CONJ Conjunct

ce Coordinating conjunction

IDTNICER®] Selected dependency relations from the Universal Dependency set. (de Marn-
effe et al., 2014)

Dependency Parsing

Relation Examples with head and dependent
NSUBJ United canceled the flight.
DOBJ United diverted the flight to Reno.

We booked her the first flight to Miami.
I0BJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD Before the storm JetBlue canceled 1000 flights.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONJ We flew to Denver and drove to Steamboat.
CC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.

DTV RR] Examples of core Universal Dependency relations.

Dependency Parsing

Relation Examples with head and dependent
NSUBJ United|canceled }he flight.
DOBJ United diverted the flight to Reno.

We booked her the first flight to Miami.
I0BJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD Before the storm JetBlue canceled 1000 flights.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONJ We flew to Denver and drove to Steamboat.
CC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.

DTV RR] Examples of core Universal Dependency relations.

Verbal Predicate -- like a function, takes
arguments: “United” and “the flight” in this case.

Dependency Parsing -- Verbal Predicates

(13.2) United canceled the morning flights to Houston

Dependency Parsing -- Verbal Predicates

cancel(“United”, “the morning flights to Houston”)

ro
dob

ot
an
an case

[Umted][canceled the morning flights to Houston

(13.2)

(From SLP 3rd ed., Jurafsky and Martin 2018)

Dependency Parsing -- Verbal Predicates

to _call_off("United”, “the morning flights to Houston™)

ro
dob

ot
an
an case

[Umted][canceled the morning flights to Houston

(13.2)

(From SLP 3rd ed., Jurafsky and Martin 2018)

Dependency Parsing -- Verbal Predicates
Semantic Roles

to_call_off(agent="United”, event="the morning flights to Houston")

roo
dob

an
(@mod) case
\ 4

[Umted][canceled the morning flights to Houston

(13.2)

(From SLP 3rd ed., Jurafsky and Martin 2018)

Dependency Parsing -- How to Represent?

A Graph: G =[(V1, A1), (V2,A2),...] (vertices and arcs)

Restrictions:
?

root
[rood (dobj]
det
A 4

(13.2) United canceled the morning flights to Houston

Dependency Parsing -- How to Represent?

A Graph: G =[(V1, A1), (V2,A2),...] (vertices and arcs)
Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROQOT to every vertex

(13.2) United canceled the morning flights to Houston

Transition-based Dependency Parsing

Inspired by “Shift-reduce parsing” -- process one word at a time, using a stack to
keep some sort of memory.

Elements:

S: stack, initialized with “ROOT”

B: input buffer, initialized with tokens (w1, w2,) of sentence
A: set of dependency arcs, initialized empty

T: Actions, given wi (next token in stack)

Transition-based Dependency Parsing

Inspired by “Shift-reduce parsing” -- process one word at a time, using a stack to
keep some sort of memory.

Elements:

S: stack, initialized with “ROOT”
B: input buffer, initialized with tokens (w1, w2,) of sentence
A: set of dependency arcs, initialized empty

e T Actions, given wi (next token in stack)
o shift(B,S): move w from Bto S
o left-arc(S,A): make top of stack head of next item: add to A; remove dependent from stack
o right-arc(S,A): make top of stack dependent of next item: add to A; remove dep from stack

Using discriminative classifiers (i.e. logistic regression) to make decisions.

Transition-based Dependency Parsing

Input buffer
wi w2 wn
- \L Dependency
ad f o Parser > Relations
Stack | -
——
sn
—

Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action based on consulting an oracle that examines the current configura-

ton. (From SLP 3rd ed., Jurafsky and Martin 2018)

| function DEPENDENCYPARS E(words) returns dependency tree

Transition-based Dependency Parsing

state «— { [root], [words], [] } ; initial configuration

while state not final
t<— ORACLE(state)

; choose a transition operator to apply

state <— APPLY(t, state) ; apply it, creating a new state

return state

Stack

s1

s2

sn

Input buffer
w1 w2 wn
. Dependency
Parser Relations
Oracle
——

Figure 13.5

tion.

Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action based on consulting an oracle that examines the current configura-

Transition-based Dependency Parsing

: function DEPENDENCYPARSE(words) returns dependency tree

|
|
. state «— { [root], [words], [] } ; initial configuration I
: while state not final I
| t < ORACLE(state) : choose a transition operator to apply !
I state <— APPLY(t, state) ; apply it, creating a new state :
I return srate I

(13.5) Book me the morning flight

Let’s consider the state of the configuration at Step 2, after the word me has been
pushed onto the stack.

Stack | Word List | Relations
[root, book, me] | [the, morning, flight] |

The correct operator to apply here is RIGHTARC which assigns book as the head of
me and pops me from the stack resulting in the following configuration.

Stack | Word List . Relations
[root, book] | [the, morning, flight] | (book — me)

Transition-based Dependency Parsing

Step Stack | Word List Action

Relation Added

0 [root] | [book, me, the, morning, flight] SHIFT

shift(B,S): move w from Bto S

left-arc(S,A): make top of stack head of next item: add to A;
remove dependent from stack

right-arc(S,A): make top of stack dependent of next item: add to A;
remove dep from stack

Transition-based Dependency Parsing

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
| [root, book] | [me, the, morning, flight] SHIFT

shift(B,S): move w from Bto S

left-arc(S,A): make top of stack head of next item: add to A;
remove dependent from stack

right-arc(S,A): make top of stack dependent of next item: add to A;
remove dep from stack

Transition-based Dependency Parsing

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
| [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)

shift(B,S): move w from Bto S

left-arc(S,A): make top of stack head of next item: add to A;
remove dependent from stack

right-arc(S,A): make top of stack dependent of next item: add to A;
remove dep from stack

Transition-based Dependency Parsing

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
| [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT

shift(B,S): move w from Bto S

left-arc(S,A): make top of stack head of next item: add to A;

remove dependent from stack

remove dep from stack

right-arc(S,A): make top of stack dependent of next item: add to A;

Transition-based Dependency Parsing

Step Stack | Word List Action Relation Added

0 [root] | [book, me, the, morning, flight] SHIFT

| [root, book] | [me, the, morning, flight] SHIFT

2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)

3 [root, book] | [the, morning, flight] SHIFT

4 [root, book, the] | [morning, flight] SHIFT

5 [root, book, the, morning] | [flight] SHIFT

6 | [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)

shift(B,S): move w from Bto S

left-arc(S,A): make top of stack head of next item: add to A;
remove dependent from stack

right-arc(S,A): make top of stack dependent of next item: add to A;
remove dep from stack

Transition-based Dependency Parsing

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
| [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT
6 [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)
7 [root, book, the, flight] | [] LEFTARC (the «+ flight)
8 [root, book, flight] | [] RIGHTARC (book — flight)
9 [root, book] | [] RIGHTARC (root — book)
10 [root] | [] Done

QTR Trace of a transition-based parse.

Dependency Parsing -- How to Represent?

A Graph: G =[(V1, A1), (V1,A2),...] (vertices and arcs)
Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROQOT to every vertex

(13.2) United canceled the morning flights to Houston

Dependency Parsing -- How to Represent?

A Graph: G =[(V1, A1), (V1,A2),...] (vertices and arcs)
Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc

3) unique path from ROQOT to every vertex

Projectivity: Given head, dependent; for every word between head and dependent
there exists a path from head to that word

dobj

@
f

United canceled the morning flights to Houston

(13.2)

Dependency Parsing -- How to Represent?

A Graph: G =[(V1, A1), (V1,A2),...] (vertices and arcs)
Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc

3) unique path from ROQOT to every vertex

Projectivity: Given head, dependent; for every word between head and dependent
there exists a path from head to that word

dobj

@
[

United| canceled the morning to Houston

(13.2)

Dependency Parsing -- How to Represent?

A Graph: G =[(V1, A1), (V1,A2),...] (vertices and arcs)
Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc

3) unique path from ROQOT to every vertex

Projectivity: Given head, dependent; for every word between head and dependent
there exists a path from head to that word

adv

(13.3) JetBlue canceled our flight this morning which was already late

Dependency Parsing -- How to Represent?

A Graph: G =[(V1, A1), (V1,A2),...] (vertices and arcs)
Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc

3) unique path from ROQOT to every vertex

Projectivity: Given head, dependent; for every word between head and dependent
there exists a path from head to that word.

Not Projective:

\ 4

JetBlue canceled our |flight this mofhing which

(13.3) already late

Dependency Parsing -- How to Represent?

A Graph: G =[(V1, A1), (V1,A2),...] (vertices and arcs)
Restrictions:
1) Single designated ROOT with no incoming arcs
2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROQOT to every vertex
Projectivity: Given head, dependent; for every word between head and dependent
there exists a path from head to that word.
Not Projective:

Why do we care? Dependency trees from Context-Free Grammars are
guaranteed to be projective; Thus, transition based techniques are certain to have
errors occasionally on non-projective dependency graphs.

From Syntax to Semantics

e \We've already seen words have many meanings.
o Context is key

e \erbs can been seen as functions (predicates) that take arguments.
o Syntactic arguments fulfill semantic roles

e \Words have implicit syntactic relationships
with each other in given sentences.
o Dependency Parsing: each word has one head
o Easily constructed through 3 actions of shift-reduce parsing.

Takeaway: There is an interplay between word meaning and sentence structure!

Graph-based Approaches

A Graph: G=[(V1,A1), (V1,A2),...] (vertices and arcs)

Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex

|ldea: Search through all possible trees and pick best.

Graph-based Approaches

A Graph: G=[(V1,A1), (V1,A2),...] (vertices and arcs)

Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex

|ldea: Search through all possible trees and pick best.

General approach: For
each word, pick the most
likely head. Then check if
still a fully-connected tree,
and adjust.

Graph-based Approaches

A Graph: G=[(V1,A1), (V1,A2),...] (vertices and arcs)

Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex

ldea: Search through all possible trees and pick best.

General approach: For
each word, pick the most
likely head. Then check if
still a fully-connected tree,
and adjust.

Complex and slow but leads
to state of the art. Now done
. with neural models.

DOORK

Semantic Roles

(13.3)

Thematic Role Definition

AGENT The volitional causer of an event

EXPERIENCER The experiencer of an event

FORCE The non-volitional causer of the event

THEME The participant most directly affected by an event
RESULT The end product of an event

CONTENT The proposition or content of a propositional event
INSTRUMENT An instrument used in an event

BENEFICIARY The beneficiary of an event

SOURCE The origin of the object of a transfer event

GOAL The destination of an object of a transfer event

JetBlue canceled our flight this morning which was already late

Semantic Roles

Thematic Role Definition

AGENT The volitional causer of an event

EXPERIENCER The experiencer of an event

FORCE The non-volitional causer of the event

THEME The participant most directly affected by an event

Roles are restricted to nouns, but signalled through
the verb and other parts of speech.

Zil UL dI1 UDJCCL U1 d H4llsIcl Cveln

this [mofning}[which] was alrevady late

ASl,lbjl-\
(13.3) canceled our

