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Topics

Dependency Parsing

Transition-based (Shift-Reduce algorithm)



Dependency Parsing

<head> <dependent>

<relationship>

dependency -- binary asymmetrical relation between tokens
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Verbal Predicate -- like a function, takes 
arguments: “United” and “the flight” in this case. 
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cancel(“United”, “the morning flights to Houston”)
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to_call_off(“United”, “the morning flights to Houston”)



Dependency Parsing -- Verbal Predicates
Semantic Roles

(From SLP 3rd ed., Jurafsky and Martin 2018)

to_call_off(agent=“United”, event=“the morning flights to Houston”)
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Inspired by “Shift-reduce parsing” -- process one word at a time, using a stack to 
keep some sort of memory. 

Elements: 

● S: stack, initialized with “ROOT”
● B: input buffer, initialized with tokens (w1, w2, ….) of sentence
● A: set of dependency arcs, initialized empty 
● T: Actions, given wi (next token in stack) 

○ shift(B,S): move w from B to S
○ left-arc(S,A): make top of stack head of next item: add to A; remove dependent from stack
○ right-arc(S,A): make top of stack dependent of next item: add to A; remove dep from stack

Using discriminative classifiers (i.e. logistic regression) to make decisions. 
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Dependency Parsing -- How to Represent? 

(From SLP 3rd ed., Jurafsky and Martin 2018)

A Graph:  G = [(V1, A1), (V1, A2), …]      (vertices and arcs)
Restrictions: 
1) Single designated ROOT with no incoming arcs
2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex
Projectivity: Given head, dependent; for every word between head and dependent 

there exists a path from head to that word.      
Not Projective:

Why do we care? Dependency trees from Context-Free Grammars are 
guaranteed to be projective; Thus, transition based techniques are certain to have 
errors occasionally on non-projective dependency graphs. 



From Syntax to Semantics

● We've already seen words have many meanings.
○ Context is key

● Verbs can been seen as functions (predicates) that take arguments. 
○ Syntactic arguments fulfill semantic roles

● Words have implicit syntactic relationships 
with each other in given sentences. 
○ Dependency Parsing: each word has one head
○ Easily constructed through 3 actions of shift-reduce parsing.

Takeaway: There is an interplay between word meaning and sentence structure!
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Graph-based Approaches

(From SLP 3rd ed., Jurafsky and Martin 2018)

A Graph:  G = [(V1, A1), (V1, A2), …]      (vertices and arcs)
Restrictions: 
1) Single designated ROOT with no incoming arcs
2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex
Idea: Search through all possible trees and pick best. 

General approach: For 
each word, pick the most 
likely head. Then check if 
still a fully-connected tree, 
and adjust. 

Complex and slow but leads 
to state of the art. Now done 
with neural models. 
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(From SLP 3rd ed., Jurafsky and Martin 2018)

     

Roles are restricted to nouns, but signalled through 
the verb and other parts of speech. 


